中教数据库 > Journal of Electronic Science and Technology > 文章详情

Machine Learning Application for Prediction of Sapphire Crystals Defects

更新时间:2023-05-28

【摘要】We investigate the impact of different numbers of positive and negative examples on machine learning for sapphire crystals defects prediction. We obtain the models of crystal growth parameters influence on the sapphire crystal growth. For example, these models allow predicting the defects that occur due to local overcooling of crucible walls in the thermal node leading to the accelerated crystal growth. We also develop the prediction models for obtaining the crystal weight, blocks, cracks, bubbles formation, and total defect characteristics. The models were trained on all data sets and later tested for generalization on testing sets, which did not overlap the training set.During training and testing, we find the recall and precision of prediction, and analyze the correlation among the features. The results have shown that the precision of the neural network method for predicting defects formed by local overcooling of the crucible reached 0.94.

【关键词】

90 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号